August 2006

Do all five problems. Explicitly verify the hypotheses of all major theorems used.

- (1) Consider Lebesgue measure μ on X=[0,1]. State whether the following are TRUE or FALSE for measurable sets E. Give a proof if the statement is TRUE and a counterexample if FALSE.
 - (a) $\mu(E) > 0$ implies E is uncountable.
 - (b) $\mu(E) = 0$ implies E is countable.
 - (c) $\mu(E) = 1$ implies E is dense in X.
 - (d) $\mu(E) > 0$ implies the the interior of E is nonempty.

 $[6,2\pi]$?? (2) Suppose that $f:[a,b]\to\mathbb{C}$.

(a) Suppose f is continuous and

$$\int_{0}^{b} e^{inx} f(x) dx = 0, \text{ for all integers } n.$$

Prove that f is identically zero.

(b) What can you say if f is an L^1 function satisfying

$$\int_{a}^{b} e^{inx} f(x) dx = 0, \text{ for all integers } n?$$

Give a proof that your answer is correct.

(3) Consider $\mathbb R$ with Lebesgue measure. Suppose $f\in L^1(\mathbb R)$ and

$$F(x) = \int_{-\infty}^{\infty} f(t) \sin(x/t) dt, \text{ for } x \in \mathbb{R}.$$

- (a) Prove that F(x) is a continuous function on \mathbb{R} .
- (b) Prove that when $f(t) = \frac{t}{(1+t^2)^{\alpha}}$, then F(x) is differentiable for all $x \in \mathbb{R}$ when $\alpha > 1$.
- (4) Let $1 \leq p \leq \infty$. Recall that $\ell^p = L^p(\mathbb{N}, \lambda)$, where λ is the counting measure. Therefore, when $1 \leq p < \infty$, ℓ^p consist of sequences $a = (a_n)$ satisfying $\sum |a_n|^p < \infty$ and ℓ^∞ consists of bounded sequences. For two sequences a and b define $T_b(a)$ to be the sequence $(a_n b_n)$.
 - (a) Describe exactly those p_1 and p_2 for which $\ell^{p_1} \subset \ell^{p_2}$ holds. Prove your answer.
 - (b) Let $b = (b_n)$ be in ℓ^{∞} . Prove that T_b gives a well-defined bounded operator from $\ell^{\mathcal{P}}$ to $\ell^{\mathcal{P}}$, for $1 \leq p \leq \infty$. Compute the norm of T_b .
 - (c) Fix p with $1 \le p < \infty$. Describe exactly those r with $1 \le r < \infty$ so that T_b gives a well-defined bounded linear map $\ell^r \to \ell^1$ for every $b \in \ell^p$. Prove your answer.
- Suppose X is a locally compact Hausdorff space. Define what it means for ν to be a Radon Measure on X. Prove that if ν is a finite Radon measure on X, then for any Borel set E in X and every $\epsilon > 0$, there is a continuous function f on X so that $f(x) \ge 1$ for all $x \in E$ and

$$|\nu(E) - \int_{Y} f \, d\nu| < \epsilon.$$