Real Analysis (Ph.D.)

Preparatory Courses: Math 5143, 5153

1. Algebras and sigma-algebras of sets, outer measures and the Caratheodory construction of measures, especially for Lebesgue-Stieltjes measures, Borel sets, Borel measures, regularity properties of measures, measurable functions.

2. Construction of the integral with respect to a measure, convergence theorems: Lebesgue dominated convergence theorem, Fatou's Lemma, and monotone convergence theorem, Egorov's Theorem, Lusin's Theorem, product measures and Fubini's Theorem.

5. Introductory functional analysis: Baire Category, Hahn-Banach theorem, uniform boundedness principle (Banach-Steinhaus), open mapping theorem, closed graph theorem, weak topologies, L^p spaces, completeness of the L^1 spaces, Minkowski and Holder inequalities, elementary Hilbert space theory, Fourier series in L^2, Riesz Representation theorems in L^p and $C(X)$.

REFERENCES: Folland, Real Analysis; Royden, Real Analysis; Rudin, Real and Complex Analysis; Hewitt and Stromberg, Real and Abstract Analysis.