Note: Define your terminology and explain your notation. If you require a standard result, state it before you use it; otherwise, give clear and complete proofs of your claims. Four problems completely correct will guarantee a pass. Partial solutions will also be considered on their merit.

Part I: Ordinary Differential Equations

1. Consider the following initial value problem:

$$x''(t) + x'(t) + \sin(x(t)) = 0$$
, for $t \in \mathbf{R}$; $x(0) = x_0, x'(0) = x_1$.

- (a) Prove that for any $(x_0, x_1) \in \mathbf{R}^2$, there exists a unique solution x = x(t) of the above problem for all $t \in (-\infty, \infty)$.
- (b) Consider the solution x = x(t) for $(x_0, x_1) = (\pi, 0)$. Is this solution a stable, asymptotically stable or unstable solution? Justify your answer.
- 2. Let *D* denote the annulus $D = \{x = (x_1, x_2) \in \mathbf{R}^2 : \frac{1}{2} < |x| < 3\}$, where $|x| = \sqrt{x_1^2 + x_2^2}$. Let **u** be the vector field given by $\mathbf{u} = (u_1(x_1, x_2), u_2(x_1, x_2)) = (-\partial_{x_2} \ln |x|, \partial_{x_1} \ln |x|)$.
 - (a) Show that the solution of the system of ordinary differential equations

$$\frac{dx_1}{dt} = u_1(x_1, x_2), \quad \frac{dx_2}{dt} = u_2(x_1, x_2), \quad x_1(0) = 2, \quad x_2(0) = 0$$

is periodic in t.

- (b) Show that $\nabla \times \mathbf{u} = \mathbf{0}$ in D and that there is not a differentiable function p such that $\mathbf{u} = \nabla p$ for every $(x_1, x_2) \in D$.
- 3. Consider the boundary-value problem

$$u''(x) = g(x) e^{u(x)}$$
 in $[0,1], \quad u(0) = u(1) = 0.$ (1)

where $g \in C[0, 1]$ is given. Show that there is one and only one solution if $0 \le g(x) \le L < 8$ for $x \in [0, 1]$ by following the steps below.

(a) Construct a Green's function $\Gamma(x,\xi)$ for

$$u''(x) = 0$$
 in $[0, 1], \quad u(0) = u(1) = 0.$

(b) Write (1) as the integral

$$u(x) = (Tu)(x) \equiv \int_0^1 \Gamma(x,\xi) f(\xi, u(\xi)) d\xi$$
(2)

where $f(\xi, u(\xi)) = g(\xi) e^{u(\xi)}$. Apply a fixed point argument to show that the integral equation (2) has a unique solution.

Part II: Partial Differential Equations

- 1. Let $U \subset \mathbb{R}^n$ be open, bounded, and connected. We say $u \in C^2(U) \cap C(\overline{U})$ is harmonic if $\Delta u = 0$ in U.
 - (a) Suppose u is harmonic and $u \ge 0$ in U. Use the Mean Value Formula to prove that either u > 0 in U or $u \equiv 0$ in U.
 - (b) Let u, v be harmonic and $u \ge v$ on ∂U . Assume u is not identically equal to v on ∂U , that is, there exists $\boldsymbol{x} \in \partial U$ such that $u(\boldsymbol{x}) \ne v(\boldsymbol{x})$. Prove that u > v in U.
- 2. (a) (Duhamel's principle) Consider the nonhomogeneous wave equation

(I)
$$\begin{cases} u_{tt} - \Delta u = f(\boldsymbol{x}, t) & \text{in } \mathbb{R}^n \times (0, \infty), \\ u = 0, \ u_t = 0 & \text{on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

Let $v(\boldsymbol{x}, t; s)$ be the solution of

$$\begin{cases} v_{tt}(\boldsymbol{x},t;s) - \Delta v(\boldsymbol{x},t;s) = 0 & \text{in } \mathbb{R}^n \times (s,\infty), \\ v(\boldsymbol{x},t;s) = 0, \ v_t(\boldsymbol{x},t;s) = f(\boldsymbol{x},s) & \text{on } \mathbb{R}^n \times \{t=s\}. \end{cases}$$

Show that u defined as following is a solution of problem (I):

$$u(\boldsymbol{x},t) := \int_0^t v(\boldsymbol{x},t;s) \, ds.$$

(b) Use the above result to solve the 1-D wave equation

$$\begin{cases} u_{tt} - u_{xx} = 2t + 4x & \text{in } \mathbb{R} \times (0, \infty), \\ u = 0, \ u_t = 0 & \text{on } \mathbb{R} \times \{t = 0\}. \end{cases}$$

3. Use the method of characteristics to solve for u(x, t):

$$\begin{cases} xu_t + u^2 u_x = 0 & \text{in } \mathbb{R} \times \mathbb{R}, \\ u(x,0) = x & \text{for } x \in \mathbb{R}. \end{cases}$$