Define your terminology and explain your notation. If you require a standard result, state it before you use it; otherwise, give clear and complete proofs of your claims. Five problems completely correct will guarantee a pass. Partial solutions will also be considered on their merit.

Part I: Fourier Analysis

1. Let f be the function on $[-\pi, \pi]$ defined by f(x) = 0 for $-\pi \le x < 0$ and f(x) = 1 for $0 \le x < \pi$. Let g be the function on $[-\pi, \pi]$ defined by $g(x) = x^2$. You may assume that the Fourier series of f and g are as follows:

$$f(x) \sim \frac{1}{2} + \sum_{n=0}^{\infty} \frac{2}{(2n+1)\pi} \sin((2n+1)x)$$

and

$$g(x) \sim \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \frac{4}{n^2} \cos nx.$$

Calculate $\int_{-\pi}^{\pi} f(x)g(x) dx$ using two methods: by direct integration, and by using the given Fourier series. Justify the second method.

- 2. In this problem we fix a function f that is 2π -periodic on the real line and integrable on $[-\pi, \pi]$. We write s_n for the nth partial sum of the Fourier series of f, and we define $\sigma_n = (s_0 + s_1 + \cdots + s_{n-1})/n$.
 - (a) Give a sufficient condition for $\{s_n\}$ to converge to f at a point.
 - (b) Give a sufficient condition for $\{\sigma_n\}$ to converge to f at a point.
 - (c) Assume that f is continuous except at finitely many points. Suppose that the Fourier series of f converges pointwise to 0. What can you conclude about f? Be sure to prove your answer.
- 3. This problem concerns the Fourier (integral) transform of functions integrable on the real line \mathbf{R} (that is, functions belonging to $L^1(\mathbf{R})$). We denote the Fourier transform of f by \hat{f} . We write S for the set of functions f on \mathbf{R} with derivatives of all orders so that if k, n are nonnegative integers then $x^k f^{(n)}(x)$ is bounded, that is, there exists a constant C (depending on f, k, n) so that $|x^k f^{(n)}(x)| \leq C$ for all x.
 - (a) Explain why S is a subset of $L^1(\mathbf{R})$.
 - (b) Let $f \in S$, and define g by g(x) = xf(x). Explain why $g \in L^1(\mathbf{R})$, and state (without proof) a formula for the Fourier transform of g.
 - (c) Use part (b) to show that if $f \in S$ then \hat{f} is differentiable and the derivative of \hat{f} is bounded.
 - (d) Assume that $f \in S$. Explain why $\lambda \hat{f}(\lambda)$ is bounded. Sketch briefly how to expand this argument and the one in part (c) to show that $\hat{f} \in S$.

Part II: Ordinary Differential Equations

1. Show that the following initial value problem has a unique local solution:

$$\frac{dy}{dx} = \frac{e^{-x}}{e^x + \sin^2 y} \qquad \text{for } x \ge 0,$$
$$y(0) = 1.$$

2. Consider the following system:

$$\begin{cases} \frac{dx}{dt} = -x^3 + xy^2\\ \frac{dy}{dt} = -2x^2y - y^3. \end{cases}$$

- (a) Find all critical points and determine whether they are hyperbolic or not.
- (b) Use a Liapunov function of the form $V(x,y) = ax^2 + by^2$, where a and b are suitable constants, to show that the origin is asymptotically stable.
- 3. Consider the system of differential equations

$$(\mathrm{P}): \qquad rac{doldsymbol{x}}{dt} = A(t)oldsymbol{x},$$

where A(t) is a real-valued $n \times n$ matrix which is continuous for $t \geq 0$. Let X(t) be the fundamental matrix for (P), which is the $n \times n$ matrix so that $\frac{dX}{dt} = A(t)X$ and so that X(0) is the identity matrix. Finally, for any $n \times n$ matrix M, we define the matrix norm $||M|| = \sup_{\mathbf{v} \in \mathbf{R}^n, |\mathbf{v}|=1} |M\mathbf{v}|$, where $|\cdot|$ is the vector Euclidean norm.

- (a) Prove that $||X(t)|| \le e^{\int_0^t ||A(s)|| ds}$ for all $t \ge 0$. You may use the fact that $||MN|| \le ||M|| ||N||$, where M and N are matrices.
- (b) Assume that $\int_0^\infty \|A(s)\| ds < \infty$. Prove that for every solution $\boldsymbol{x}(t)$ to (P) the limit $\lim_{t\to\infty} \boldsymbol{x}(t)$ exists. (*Hint: Consider the integral form.*) You may use the following result without proof: Given f continuous with $|f(s)| \leq |g(s)|$ for $0 \leq s < \infty$ and $\int_0^\infty |g(s)| ds < \infty$, then $\int_0^\infty f(s) ds$ converges.