Comprehensive Exam-Numerical Analysis

January 2009

General Instructions: Define your terminology and explain your notation. If you require a standard result, then state it before you use it; otherwise, give clear and complete proofs of your claims. 4 problems completely correct will guarantee a pass. Partial solutions will also be considered on their merit.

1. In order to approximate the solution of

$$y' = y \quad \text{with } y(0) = 1,$$

the following form of Taylor method is applied:

$$y_{n+1} = y_n + hy_n$$
, where $x_n = n h$ and $y_0 = 1$.

Show that $\lim_{h\to 0} y_N = e$, where Nh = 1 and y_N is the approximation to y(1).

2. Consider the following initial value problem:

$$u_t + u_x = 0, x \in \mathbf{R}^1, t > 0,$$

 $u(t, x) = u_0(x), x \in \mathbf{R}^1,$

where $u_0(x) \in C^{\infty}([0,1])$.

- (i) Propose the backward-time central-space scheme. Use k and h for time step and space step respectively. Use $v_m^n = u(nk, mh)$.
- (ii) Prove that the above scheme is unconditionally stable in the 2-norm. The 2-norm of v^n is given

$$||v^n||_2 = \left(h \sum_{j=-\infty}^{\infty} |v_j^n|^2\right)^{1/2}.$$

3. Suppose $f \in C^{\infty}([0,1])$ and consider the boundary problem:

$$-u'' = f,$$
 $x \in (0,1),$ $u(0) = u(1) = 0.$

Consider solving the problem using the following scheme:

$$\frac{-U_{j-1} + 2U_j - U_{j+1}}{(\triangle x)^2} = f(j\triangle x), \ j = 1, 2, ..., J - 1; U_0 = 0, U_J = 0,$$
 (1)

where $\triangle x = \frac{1}{J}$. Show that there exists a unique solution $U = [U_1, U_2, ..., U_{J-1}]^T$ satisfying (1).

4. Let $A \in \mathbf{R}^{n \times n}$ be an invertible matrix and let $b \in \mathbf{R}^n$ and $b \neq 0$. Let $\kappa(A)$ be the condition number of A, namely $\kappa(A) = ||A|| ||A^{-1}||$. Let $\Delta A \in \mathbf{R}^{n \times n}$ and $\Delta b \in \mathbf{R}^n$. Suppose $||\Delta A|| \leq \epsilon ||A||$, $||\Delta b|| \leq \epsilon ||b||$,

$$Ax = b$$
 and $(A + \Delta A)y = b + \Delta b$.

If $r \equiv \epsilon \kappa(A) < 1$, show that $A + \Delta A$ is invertible and

$$\frac{\|y\|}{\|x\|} \le \frac{1+r}{1-r}.$$

5. Please calculate by hand. Let

$$A = \left[egin{array}{cc} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}
ight], \qquad b = \left[egin{array}{cc} 1 \\ -1 \\ 1 \end{array}
ight]$$

- (a) Find the singular value decomposition of A.
- (b) Find the least square solution of Ax = b.
- 6. Let $A \in \mathbf{R}^{n \times n}$ and let v be an eigenvector of A with associated eigenvalue λ . Assume $\|v\|_{\infty} = 1$, where $\|v\|_{\infty} = \max_{1 \leq j \leq n} |v_j|$ denotes the l_{∞} -norm of v. Let p be a number such that $(A pI)^{-1}$ exists and $|\lambda p| < |\mu p|$ for any other eigenvalue μ of A.
 - (a) Show that v is an eigenvector of $(A pI)^{-1}$. What is the corresponding eigenvalue?
 - (b) Assume that the span of all eigenvectors of A is \mathbf{R}^n . Show that, for any starting vector $y^{(0)}$ not perpendicular to v, the sequence $\{y^{(k)}\}$ generated by the algorithm

$$y_*^{(k+1)} = (A - pI)^{-1} y^{(k)}, \quad y^{(k+1)} = y_*^{(k+1)} / ||y_*^{(k+1)}||_{\infty}$$

converges to $\pm v$ in l_{∞} .

(c) Explain how to obtain an approximation of λ using $\{y^{(k)}\}$.