Numerical Analysis Comprehensive Exam, January, 2007 Department of Mathematics, Oklahoma State University

Note: There are 2 hours and 6 problems in total. Solve all 6 problems. Brief details should be provided justifying each step towards final answers to all the problems.

1. Consider solving the initial value problem:

$$u_t + u_x = 0$$
, $x \in \mathbb{R}^1$, $t > 0$, $u(x, 0) = u_0(x)$, $x \in \mathbb{R}^1$,

with the following finite difference scheme:

$$\frac{2U_j^{n+1} - U_{j+1}^n - U_{j-1}^n}{\Delta t} + \frac{U_{j+1}^n - U_{j-1}^n}{\Delta x} = 0, \quad U_j^0 = u_0(j\Delta x),$$

where $n = 1, 2, \dots, j = 0, \pm 1, \pm 2 \dots$ and $\Delta t, \Delta x > 0$.

- (a) State briefly the definition of consistency of the above numerical scheme for the initial value problem. Suppose $\Delta t = (\Delta x)^{\alpha}$ with $\alpha > 0$. Find, and justify, the exact range of α so that the above numerical scheme is consistent.
- (b) State briefly the definition of stability, in the 2-norm, of the above numerical scheme. Define $\nu \equiv \frac{\Delta t}{\Delta x}$ and the 2-norm of U^n as following:

$$||U^n||_2 \equiv \left[\Delta x \sum_{j=-\infty}^{+\infty} |U_j^n|^2\right]^{\frac{1}{2}}.$$

Find, and justify, the exact range of ν so that the above numerical scheme is stable in 2-norm.

2. Consider the following finite difference scheme:

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} = \frac{U_{j+1}^n - 2U_j^n + U_{j-1}^n}{(\Delta x)^2}.$$

where $n=1,2,\cdots,j=0,\pm 1,\pm 2\cdots$ and $\Delta t,\,\Delta x>0$. Define:

$$\mu := \frac{\Delta t}{(\Delta x)^2}, \quad \|U^n\|_{\infty} := \sup_{-\infty < j < +\infty} |U_j^n|.$$

Find, and justify, the exact range of μ so that $||U^n||_{\infty} \leq ||U^0||_{\infty}$ for all $n \geq 1$ and for all U^0 with $||U^0||_{\infty}$ being finite.

3. Suppose $f \in C([0,1])$ and u solves the boundary value problem:

$$u_{xx}(x) = f(x), x \in [0,1]; u(0) = 0, u(1) = 0.$$

Consider solving the problem using the following scheme:

$$\frac{U_{j+1}-2U_j+U_{j-1}}{(\Delta x)^2}=f(j\Delta x), \quad j=1,2,\ldots,J-1; \quad U_0=0, \ U_J=0,$$

where $\Delta x = 1/J$. Prove the following:

$$\lim_{\Delta x \to 0} \max_{0 \le j \le J} |U_j - u(x_j)| = 0.$$

4. (a) Define the Householder reflection $H \in \mathbb{C}^{4\times 4}$ by

$$H = I - \frac{2}{\mathbf{v}^* \mathbf{v}} \mathbf{v} \mathbf{v}^* \in \mathbf{C}^{4 \times 4}$$

where the (column-) vector $\mathbf{v} = [1, 1, -1, 1]^T \in \mathbf{C}^4$ is given. Show that H is

- (i) a unitary matrix,
- (ii) a hermitian matrix.

You may wish to begin by stating definitions of conditions (i) and (ii) for the general case of a matrix $A \in \mathbb{C}^{n \times n}$.

(ii) for the general case of a

$$A = \begin{bmatrix} 1 & -2 & -3 \\ -1 & 2 & 5 \\ 1 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix} \in \mathbf{C}^{4 \times 3},$$

then the matrix product HA is upper triangular.

5. Let

$$A = \begin{bmatrix} -11/5 & 23/5 \\ -19/5 & 17/5 \end{bmatrix} \in \mathbf{R}^{2 \times 2}.$$

Determine $||A||_2$, the 2-norm of A. Hint: Show the (column-) vectors $\mathbf{u} = [1, 1]^T$ and $\mathbf{v} = [-1, 1]^T$ are eigenvectors of matrix $B = AA^T$. Do not confuse the 2-norm of matrix A with its Frobenius norm.

6. Suppose that for a given diagonalizable real matrix $A \in \mathbb{R}^{n \times n}$ with n distinct eigenvalues λ_i , $i = 1, \dots, n$, we have obtained a number $\mu \approx \lambda_n$ by numerical computations.

- (a) Briefly decribe the algorithm of inverse iteration for computing approximate eigenvectors, $\mathbf{v}^{(k)}$ of matrix A, such that $A\mathbf{v}^{(k)} \approx \lambda_n \mathbf{v}^{(k)}$, by solving systems of equations involving the approximate eigenvalue μ .
- (b) Sketch a proof that inverse iteration will produce vectors $\mathbf{v}^{(k)}$, $k = 1, 2, \dots$, converging to a suitable eigenvector \mathbf{v}_n , $A\mathbf{v}_n = \lambda_n\mathbf{v}_n$, $A\mathbf{v}^{(k)} \approx \lambda_n\mathbf{v}^{(k)}$, as $k \to \infty$, stating any additional hypotheses that may be required.