Comprehensive Exam - Numerical Analysis, August, 2016

General Instructions: Define your terminology and explain your notation. If you use a standard result, state it clealy first; otherwise, give clear and complete proofs of your claims. 4 problems completely correct guarantee a pass. Partial solutions will also be considered on their merit.

Notation: In problems 1-2, let k > 0 and h > 0 be the time step size and spatial step size, respectively. Denote by U_m^n the value of the grid function at point $(x_m, t_n) = (mh, nk)$, for $m \in \mathbb{Z}$ and $n \in \{0\} \cup \mathbb{Z}^+$.

1. Construct a finite difference scheme that is consistent with the strongly damped wave equation

$$u_{tt} - u_{txx} - u_{xx} = f.$$

You must verify the consistency of the scheme.

2. Analyze the stability of the Crank-Nicolson scheme

$$\frac{U_m^{n+1} - U_m^n}{k} - \frac{b}{2} \left(\frac{U_{m+1}^{n+1} - 2U_m^{n+1} + U_{m-1}^{n+1}}{h^2} + \frac{U_{m+1}^n - 2U_m^n + U_{m-1}^n}{h^2} \right) = 0$$

for the heat equation $u_t - bu_{xx} = 0$, where b is a positive constant.

3. Consider the 2D elliptic equation with Dirichlet boundary condition:

$$\begin{cases} -\Delta u + u_x = f & \text{in } \Omega = (0, 1)^2, \\ u = g & \text{on } \partial \Omega. \end{cases}$$

Define a grid $(x_m, y_n) = (mh, nh)$ for $0 \le m, n \le N$ and $h = \frac{1}{N}$. Show that the scheme

$$\frac{4U_{m,n} - U_{m-1,n} - U_{m,n-1} - U_{m+1,n} - U_{m,n+1}}{h^2} + \frac{U_{m,n} - U_{m-1,n}}{h} = f(x_m, y_n)$$

satisfies the following discrete maximum principle: if $f(x,y) \leq 0$ for all $(x,y) \in \Omega$, then the maximum value of $U_{m,n}$ is attained on $\partial\Omega$, i.e.,

$$\max_{0 \le m, n \le N} U_{m,n} = \max_{(x_m, y_n) \in \partial \Omega} U_{m,n}.$$

4. Let Ω be a bounded open subset of \mathbb{R}^2 with smooth boundary $\partial\Omega$, $f\in L^2(\Omega)$, α and β be real constants, $V=\{v\in H^1(\Omega):\ v|_{\partial\Omega}=0\}$. Prove existence and uniqueness of $u\in V$ such that, for all $v\in V$,

$$a(u,v) := \int_{\Omega} (\nabla u \cdot \nabla v + \alpha u_x v + \beta u_y v) \ dxdy = F(v) := \int_{\Omega} fv \ dxdy.$$

5. Assume the same as in problem 4 and that V_h is a subspace of V, u_h is such that $a(u_h, v) = F(v)$ for all $v \in V_h$ and I_h is a linear mapping from $V \cap H^2(\Omega)$ to V_h such that

$$||v - I_h v||_{H^1(\Omega)} \le C_0 h |v|_{H^2(\Omega)}, \quad v \in V \cap H^2(\Omega),$$

where C_0 is independent of v and h. Prove existence of a constant C > 0, independent of u and h, such that

$$||u-u_h||_{H^1(\Omega)} \le Ch|u|_{H^2(\Omega)}, \quad ||u-u_h||_{L^2(\Omega)} \le Ch^2|u|_{H^2(\Omega)}.$$

- 6. Let $\Omega=(0,1)^2,\ M\geq 10$ be a positive interger and h=1/M. Let $\mathcal{T}=\{K_{i,j}\}_{i,j=1}^M$, where $K_{i,j}=[(i-1)h,ih]\times[(j-1)h,jh]\subset\bar{\Omega}$. Let $\mathcal{P}=\{v\in C(\bar{\Omega}):v(x,y)=a_0xy+a_1x+a_2y+a_3,\ a_i\in\mathbb{R},i=0,1,2,3.\}$. For each $K\in\mathcal{T}$, let $\mathcal{N}=\{N_i\}_1^4$, where $N_i(v)=v(z_i)$ for $v\in C(K)$ and z_i 's are the four vertices of K. Let $\mathcal{I}_{\mathcal{T}}$ be the global interpolation operator for the family $\{(K,\mathcal{N},\mathcal{P}):\ K\in\mathcal{T}\}$ and $W_h=\{\mathcal{I}_{\mathcal{T}}f:\ f\in C(\bar{\Omega})\}$.
 - (a) Prove $(K, \mathcal{N}, \mathcal{P})$ is a finite element for each $K \in \mathcal{T}$.
 - (b) Prove $W_h \subset C(\bar{\Omega}) \cap H^1(\Omega)$.