Comprehensive Exam-Numerical Analysis

August 2015

General Instructions: Define your terminology and explain your notation. If you require a standard result, then state it before you use it; otherwise, give clear and complete proofs of your claims. 4 problems completely correct will guarantee a pass. Partial solutions will also be considered on their merit.

1. Find the order of accuracy of the scheme for equation $u_t + au_x = f$:

$$\frac{v_m^{n+1} - v_m^n}{k} + a \frac{v_{m+1}^n - v_{m-1}^n}{2h} - \frac{a^2k}{2} \left(\frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2} \right) = f(t_n, x_m),$$
for $m \in \mathbb{Z}, n \in \{0\} \cup \mathbb{Z}_+,$

where $t_n = nk$, $x_m = mh$ and h, k > 0. Justify your answer rigorously.

2. Consider the numerical scheme for the equation $u_t = u_{xx} + u_{yy}$:

$$\frac{\tilde{v}_{i,j}^{n} - v_{i,j}^{n}}{k} = \frac{v_{i,j+1}^{n} - 2v_{i,j}^{n} + v_{i,j-1}^{n}}{h^{2}} + \frac{\tilde{v}_{i+1,j}^{n} - 2\tilde{v}_{i,j}^{n} + \tilde{v}_{i-1,j}^{n}}{h^{2}},$$

$$\frac{v_{i,j}^{n+1} - \tilde{v}_{i,j}^{n}}{k} = \frac{v_{i,j+1}^{n+1} - 2v_{i,j}^{n+1} + v_{i,j-1}^{n+1}}{h^{2}} - \frac{v_{i,j+1}^{n} - 2v_{i,j}^{n} + v_{i,j-1}^{n}}{h^{2}},$$

$$i, j \in \mathbb{Z}, \quad n \in \{0\} \cup \mathbb{Z}_{+},$$

where k, h > 0. Find the necessary and sufficient condition on k, h such that the scheme is stable in 2-norm.

3. The nine-point Laplacian operator is defined as

$$\Delta_h U_{i,j} := \frac{1}{6h^2} (U_{i+1,j+1} + U_{i+1,j-1} + U_{i-1,j+1} + U_{i-1,j-1})$$

$$+ \frac{2}{3h^2} (U_{i+1,j} + U_{i-1,j} + U_{i,j+1} + U_{i,j-1})$$

$$- \frac{10}{3h^2} U_{i,j}, \quad i, j = 1, \dots, m-1,$$

where $m \geq 10$ is a positive integer and h = 1/m. Prove that Δ_h satisfies a discrete maximum principle.

4. Consider the boundary value problem:

$$-u''(x) = f(x), x \in (0,1), u(0) = u'(1) = 0.$$
(1)

where $f \in C^0([0, 1])$.

Let

$$V = \{ v \in L^2(0,1) : a(v,v) < \infty, v(0) = 0 \},\$$

and

$$a(u,v) = \int_0^1 u'(x)v'(x)dx$$
, and $(f,v) = \int_0^1 f(x)v(x)dx$.

Define a weak solution $u \in V$ as follows:

$$a(u,v) = (f,v) \quad \forall v \in V.$$
 (2)

- (a) Suppose the weak solution $u \in V$ of (2) belongs to $C^2([0,1])$. Show that the weak solution u of (2) solves (1).
- (b) Let $S \subset V$ be a finite dimensional subspace satisfying

$$\inf_{v \in S} \|w - v\|_E \le \epsilon \|w''\|,$$

where $||u||_E^2 = a(u,u)$ and $||u||^2 = \int_0^1 |u(x)|^2 dx$. Define $u_S \in S$ such that $a(u_S,v) = (f,v), \forall v \in S$. Show that

$$||u - u_S|| \le \epsilon ||u - u_S||_E.$$

5. Let K be a polygon in \mathbb{R}^2 with $\operatorname{diam} K = h$ and $W_p^l(K)$ be a Sobolev space, where $1 \leq p \leq \infty$ and $0 \leq l$. Let \mathcal{P} be a finite dimensional subspace of $W_p^l(K) \cap L_q(K)$, where $1 \leq q \leq \infty$. Show that there exist C independent of v such that for all $v \in \mathcal{P}$,

$$||v||_{W_p^l(K)} \le Ch^{-l+\frac{2}{p}-\frac{2}{q}}||v||_{L_q(K)}$$

6. Let Ω be a convex polygonal domain in \mathbf{R}^2 and $V = H_0^1(\Omega)$. Let

$$a(u, v) = (\nabla u, \nabla v), \text{ for } u, v \in V.$$

Assume that there is a unique solution, u, to the variational problem

$$a(u, v) = (f, v)$$
, for all $v \in V$.

Let V_h be a finite element subspace of V and define $u_h \in V_h$ via

$$a(u_h, v) = (f, v)$$
 for all $v \in V_h$.

Define $||v||_E = a(v, v)^{1/2}$ for all $v \in V$.

(a) Show that

$$||u_h - \chi||_E \le ||u - \chi||_E, \quad \forall \chi \in V_h.$$

(b) Using (a), show that

$$||u-u_h||_E \le 2||u-\chi||_E, \quad \forall \chi \in V_h.$$