Comprehensive Exam–Numerical Analysis January, 2015

General Instructions: Define your terminology and explain your notation. If you require a standard result, then state it before you use it; otherwise, give clear and complete proofs of your claims. 4 problems completely correct will guarantee a pass. Partial solutions will also be considered on their merit.

1. Consider the scheme

$$\frac{1}{2k}\left[\left(v_m^{n+1} + v_{m+1}^{n+1}\right) - \left(v_m^n + v_{m+1}^n\right)\right] + \frac{a}{2h}\left[\left(v_{m+1}^{n+1} - v_m^{n+1}\right) + \left(v_{m+1}^n - v_m^n\right)\right] = 0$$

for the one-way wave equation $u_t + au_x = 0$. Here *a* is a real constant, v_m^n is the value of the grid function defined on $(x_m, t_n) = (mh, nk)$, for $m \in \mathbb{Z}$, $n \in \{0\} \cup \mathbb{Z}^+$. Prove the scheme is consistent and is stable in 2-norm for all values of $\lambda = k/h$.

2. Consider the upwinding scheme

$$\frac{v_m^{n+1} - v_m^n}{k} + a \frac{v_m^n - v_{m-1}^n}{h} = b \frac{v_{m-1}^n - 2v_m^n + v_{m+1}^n}{h^2},$$

for the convection-diffusion equation $u_t + au_x = bu_{xx}$, where a > 0, b > 0, and v_m^n is the value of the grid function defined on $(x_m, t_n) = (mh, nk)$, for $m \in \mathbb{Z}$, $n \in \{0\} \cup \mathbb{Z}^+$. Derive an exact condition on a, b, k and h such that the scheme is stable in the maximum norm.

3. Consider the Poisson equation in polar coordinates:

$$-\Delta u \triangleq -\left[\frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial u}{\partial r}) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2}\right] = f \quad \text{for } 0 < a \le r \le b \text{ and } 0 < \alpha \le \theta \le \beta < 2\pi,$$

with proper boundary conditions. Define a grid by $(r_i, \theta_j) = (a + ih_r, \alpha + jh_\theta)$ where h_r and h_θ are the step sizes. Compute the truncation error of the following scheme:

$$-\left[\frac{r_{i+\frac{1}{2}}(U_{i+1,j}-U_{i,j})-r_{i-\frac{1}{2}}(U_{i,j}-U_{i-1,j})}{r_ih_r^2}+\frac{U_{i,j-1}-2U_{i,j}+U_{i,j+1}}{r_i^2h_\theta^2}\right]=F_{i,j},$$

where $U_{i,j}$ is the grid function defined on (r_i, θ_j) , and $F_{i,j} = f(r_i, \theta_j)$. You can assume all functions are infinitely differentiable when computing the truncation error.

4. Let

$$\begin{cases} -\Delta u = f & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{in } \partial\Omega, \end{cases}$$
(1)

Assume the following regularity estimate

$$||u||_{H^2(\Omega)} \le C ||f||_{L_2(\Omega)}$$

(a) Find the necessary condition for $f \in L_2(\Omega)$, where Ω is bounded polygonal domain, so that solutions to (1) exists.

(b) Consider the variational formulation of (1)

$$(\nabla u, \nabla v) = (f, v)$$
 for all $v \in V$,

where $V = \{v \in H^1(\Omega); \int_{\Omega} v dx = 0\}$ and (\cdot, \cdot) is the standard inner product. Let $V_h \subset V$ be an approximate space satisfying

$$\inf_{w \in V_h} \|v - w\|_{H^1(\Omega)} \le Ch \|v\|_2.$$

Let $u_h \in V_h$ be the approximate solution of u in (1) satisfying

$$(\nabla u_h, \nabla v) = (f, v), \text{ for all } v \in V_h.$$

Show that

$$||u - u_h||_0 \le Ch^2 ||u||_2.$$

5. Let $V = \{v \in H^1([0,1]) : v(0) = v'(1) = 0\}$ and

$$g_x(t) = \begin{cases} t & t < x, \\ x & otherwise \end{cases}$$

for $x \in [0, 1]$.

(a) Show that

$$(\nabla v, \nabla g_x) = v(x),$$

for all $v \in V$.

(b) Let $u \in V$, and let u_h satisfy $(\nabla(u - u_h), \nabla \psi) = 0$ for all ψ , where ψ is any piecewise linear continuous functions on the mesh $x_0 = 0 < x_1 < \dots x_{n-1} < x_n = 1$ with $\psi(0) = 0$. Show that

$$(u-u_h)(x_i)=0,$$

for all i = 1, ..., n.

Restatement: Let $V_h \subset V$ be the set of piecewise linear continuous functions ψ on a mesh $x_0 = 0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = 1$ with $\psi(0) = 0$. Let $u \in V$ and $u_h \in V_h$ satisfy $(\nabla(u - u_h), \nabla \psi) = 0$ for all $\psi \in V_h$. Show that $(u - u_h)(x_i) = 0$ for $i = 1, 2, \ldots, n$.

6. Let K be a polygon in \mathbb{R}^2 with diamK = h, and \mathcal{P} is a finite dimensional subspace of $W_p^l(K) \bigcap L_q(K)$, where $1 \leq p \leq \infty, 1 \leq q \leq \infty$ and $0 \leq l$. Show that there exist C independent of v such that for all $v \in \mathcal{P}$,

$$\|v\|_{W_p^l(K)} \le Ch^{-l+\frac{n}{p}-\frac{n}{q}} \|v\|_{L_q(K)}$$