Comprehensive Exam-Numerical Analysis

June 2010

General Instructions: Define your terminology and explain your notation. If you require a standard result, then state it before you use it; otherwise, give clear and complete proofs of your claims. 4 problems completely correct will guarantee a pass. Partial solutions will also be considered on their merit.

1. Consider the reverse Lax-Friedrichs scheme

$$\frac{\frac{1}{2}\left(v_{m+1}^{n+1} + v_{m-1}^{n+1}\right) - v_m^n}{k} + a\frac{v_{m+1}^{n+1} - v_{m-1}^{n+1}}{2h} = 0$$

for the one-way wave equation $u_t + a u_x = 0$, where $x \in \mathbb{R}$ and $t \ge 0$. Under which condition is this scheme stable? Justify your answer.

2. The Crank-Nicolson scheme for the heat equation $u_t = b u_{xx}$ ($x \in \mathbb{R}$ and $t \ge 0$) is given by

$$\frac{v_m^{n+1} - v_m^n}{k} = \frac{1}{2}b \frac{v_{m+1}^{n+1} - 2v_m^{n+1} + v_{m-1}^{n+1}}{h^2} + \frac{1}{2}b \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2}.$$

Show that this scheme is accurate of order 2 in time and order 2 in space.

3. Write out the matrix equation for the standard second order central difference approximation to the equation

$$u_{xx} + u_{yy} = f(x, y), \qquad (x, y) \in [0, 1] \times [0, 1]$$

with the boundary conditions

$$u(0,y) = 1$$
, $u(1,y) = 0$, $u_y(x,0) = u_y(x,1) = 0$.

4. Consider the boundary value problem:

$$-u'' + u = f, x \in (0, 1), u(0) = u(1) = 0.$$

- (a) Introduce a weak formulation of this problem in appropriate Sovolev spaces defined on the interval (0,1).
- (b) Prove the existence and uniqueness of the weak solution.

5. Let V be a Hilbert space and $a(\cdot,\cdot)$ a bounded, symmetric and coercive bilinear form on V. Given $F \in V'$, we want to find $u \in V$ such that a(u,v) = F(v) for all $v \in V$. The Ritz-Galerkin approximation problem is the following: Given a finite-dimensional subspace $V_h \subset V$, find $u_h \in V_h$ such that

$$a(u_h, v) = F(v)$$
 for all $v \in V_h$.

Show that u_h minimizes the quadratic functional

$$Q(v) = a(v, v) - 2F(v)$$
 for all $v \in V_h$.

6. Let Ω be a bounded open set in \mathbf{R}^n with smooth boundary and $V = H_0^1(\Omega)$. Let

$$a(u, v) = (\nabla u, \nabla v) + (u, v), \text{ for } u, v \in V.$$

Assume that there is a unique solution, u, to the variational problem

$$a(u, v) = (f, v)$$
, for all $v \in V$,

and the regularity estimate

$$||u||_{H^2(\Omega)} \le C_1 ||f||_{L_2(\Omega)}$$

holds for all $f \in L_2(\Omega)$. Let V_h be a finite element subspace of V satisfying

$$\inf_{v \in V_h} \|u - v\|_{H^1(\Omega)} \le C_2 h \|u\|_{H^2(\Omega)},$$

and define $u_h \in V_h$ via

$$a(u_h, v) = (f, v)$$
 for all $v \in V_h$.

Show that

$$||u - u_h||_{L_2(\Omega)} \le C_1 \cdot C_2 h ||u - u_h||_{H^1(\Omega)}.$$