
Calculus III: Math 2163-62552 Fall 2017					
Instructor:	David Stapleton				
Office:	MSCS 436	Office phone:	744-2302		
Classroom	CLBN 303	MWF 10:30-11:20			
Office hours:	Mon. 9:30-10:20, Wed. 12:30-1:20, Fri. 1:30-2:20* (*=the <i>Friday afternoon hour is held at the Mathematics Learning Success Center</i> (MLSC), 5 th floor of the Edmon Low Library).				
Brightspace D2L material:	https://my.okstate.ed	du/ (click on o	Online Classroom)		
e-mail:	david.stapleton@oks	state.edu			

Course Description: Methods of solution of ordinary differential equations with applications. First order equations, linear equations of higher order, series solutions and Laplace transforms. Various applications are considered, especially for engineering and the sciences. Numerical approximations, existence and uniqueness, and qualitative analyses of solutions are considered.

Prerequisites: MATH 2153 (Calculus II) with a grade of C or better.

Text and Resources:

- 1. Calculus, 3rd Ed., by Jon Rogawski, W.H. Freeman & Co., required with WebAssign: http://www.webassign.net/v4cgi/selfenroll/classkey.html
- 2. D2L class notes and practice problems: https://my.okstate.edu/
- 3. Paul's Online Math Notes, http://tutorial.math.lamar.edu/Classes/CalcIII/CalcIII.aspx (optional)
- 6. TI-89 or TI-Nspire CAS (don't get it without the CAS!) or similarly equipped calculator (optional)
- 8. MLSC tutoring (times TBA) at the 5th floor, Edmon Low Library (optional).

Course Objectives:

To learn multivariable calculus, where notions from single-variable calculus are generalized to apply to functions of more than one variable. This includes analytic geometry in three dimensions and basic notions of vectors and vector calculus.

Evaluation Criteria:

There will be three midterm examinations, WebAssign homework, and a final examination, with the exams worth 100 points each, WebAssign worth 100 points, and the final exam worth 100 points, for a total of 500 points possible. The exam grades will be determined by A: 90-100%, B: 80-89%, C: 70-79%, D: 60-69% unless easier curves are announced in class for specific exams. If you must miss an examination other than the final exam then it may be made up, provided the reason for missing is approved by the instructor and the exam is made up within one class week. You should immediately enroll at http://www.webassign.net/v4cgi/selfenroll/classkey.html using the class code

Dishonest Work: Participating in a behavior that violates academic integrity will result in an official academic sanction. Violations may subject you to disciplinary action including the following: receiving a failing grade on an assignment, examination or course, receiving a notation of a violation of academic integrity on your transcript, and being suspended from the University. You have the right to appeal.

Office of Student Disability Services (SDS) 315 Student Union/405-744-7116 http://sds.okstate.edu/ . According to the Americans with Disabilities Act, each student with a disability is responsible for notifying the University of his/her disability and requesting accommodations. If you think you have a qualified disability and need special accommodations, you should request verification of eligibility for accommodations from the Office of SDS.

Syllabus Attachment: For additional policies that apply to all courses at OSU see the University attachment: http://academicaffairs.okstate.edu, click on "Resources for Students" and then on "Current Syllabus."

Important Dates:

- Monday, August 21: First day of classes
- Monday, August 28: Deadline for dropping without a W (and full tuition refund)
- Friday, September 1: Deadline for dropping with a W (and partial tuition refund).
- Monday, September 4: No classes (Labor Day).
- Wednesday, September 20: Exam 1
- Friday, October 20: No classes (Fall Break)
- Wednesday, October 25: Exam 2
- Friday, November 10: W Drop/Withdraw deadline
- Wednesday, November 22, to Friday, November 24: No classes (Thanksgiving Break)
- Wednesday, November 29: Exam 3
- Monday, December 4, to Friday, May 8: Prefinals Week (a.k.a. Dead Week).
- December 13, Wednesday, 10:00-11:50: Final Exam

Course Outline:

CH 12	Vector G		eometry	
12.1	Vectors in the Plane		1	
12.2	Vectors	n Three Dimensions	1	
12.3	Dot Product and the Angle		2	
	betweer	Vectors		
12.4	The Cros	s Product	2	
12.5	Planes ir	Three Space	1	
11.5	Conic Sections		1	
12.6	A Survey	of Quadric Forms	1	
12.7	Cylindric	al and Spherical	1	
	Coordina	ates		
Chapter 12	Гotal	10		
CH 13		Calculus	culus of Vector-Valued	
		Function	ıs	
13.1	Vector-V	'alued Functions	1	
13.2	Calculus	of Vector-Valued	1	
	Functions			
13.3	Arc Length and Speed		1	
13.4	Curvature		(Drop)	
13.5	Motion in Three Space		1	

13.6	Planetar	y Motion according	(Drop)	
	to Kepler, Newton			
Chapter 13 Tota	I	4		
CH 14		Differen	iation in Several Variables	
14.1	Function	s of Two or More	1	
	Variable			
14.2		Limits and Continuity in		
	Several \			
14.3		erivatives	1	
14.4	Different Planes	tiability and Tangent	1	
14.5	The Grad	lient and Directional	1	
	Derivativ	res		
14.6	The Chai	n Rule	1	
14.7	-	ition in Several	2	
	Variable			
14.8		Multipliers:	1	
	Optimizing with constraint			
Chapter 14 Tota		9		
CH 15			Integration	
15.1		on in Two Variables	1	
15.2		Double Integrals over more 1		
	general ı	_		
15.3	Triple In	_	1	
15.4	_	on in polar,	2	
		al, and spherical		
15.5	• • •	ons of Multiple	1	
	Integrals		_	
15.6		of Variables	1	
Chapter 15 Tota		7		
CH 16	.,		Surface Integrals	
16.1	Vector F		1	
16.2	Line Inte		2	
16.3		ative Vector Fields	2	
16.4		rized Surfaces and	(Drop)	
1.5	Surface I	_	,	
16.5		Surface Integrals of Vector (Drop) Fields		
Chapter 16 Tota		5		
CH 17		Fundamental Theorems of Vector Analysis		
17.1	Green's	Theorem	2	