Comprehensive Examination in Complex Analysis January 2018

Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits.

- 1. Suppose \mathbb{D} is the unit disk, $p \in \mathbb{D}$, and $f : \mathbb{D} \setminus \{p\} \to \mathbb{D} \setminus \{p\}$ is a holomorphic bijection. Show that f extends to a holomorphic bijection $F : \mathbb{D} \to \mathbb{D}$. Show that F(p) = p.
- 2. (i) State Morera's Theorem.
 (ii) Suppose f_n, n ∈ N, are analytic in an open set G and f_n → f uniformly on compact subsets of G. Show that f is analytic in G.
- 3. Suppose f is entire and takes real values on a circle $\{z : |z a| = r\}$. Prove that f is constant. Is this conclusion true if the circle is replaced by a line?
- 4. Assume that $\{f_n\}_{n=1}^{\infty}$ is a sequence of one-to-one analytic functions that converges uniformly on compact subsets of a domain G to a function f. Show that if f is not constant, then it is one-to-one.
- 5. Find the Laurent series for

$$f(z) = \frac{(z+1)}{z(z-4)^3}$$

in the annulus $\{z: 0 < |z-4| < 4\}$. Evaluate the integral $\int_{|z-4|=2} f(z) dz$, where the contour is run once in the positive direction.

6. Suppose that f is entire and

$$h(z) := \frac{\sin z}{z^2 + z + 1}.$$

Show that if $h \circ f$ is entire, then f is constant.