Comprehensive Examination in Complex Analysis June 2017

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, and let $H(\Omega)$ be the set of all holomorphic functions in a domain Ω .

- 1. Suppose V is a connected open set and that f and \overline{f} are both holomorphic in V. Show that f is constant.
- 2. Assume $F: [-1,1] \to \mathbb{C}$ is continuous, and define $f: \mathbb{C} \setminus [-1,1] \to \mathbb{C}$ by

$$f(z) = \int_{-1}^{1} \frac{F(t)}{z - t} dt$$

Show that f is holomorphic in $\mathbb{C} \setminus [-1, 1]$, and that $\lim_{z\to\infty} f(z) = 0$.

- 3. Suppose that f is entire and $|f(x+iy)| \le e^{x^2-y^2}$ for all $x, y \in \mathbb{R}$. Prove that $f(z) = ce^{z^2}$ where $c \in \mathbb{C}$ and $|c| \le 1$.
- 4. Show that every meromorphic function in \mathbb{C} is a ratio of two entire functions.
- 5. Suppose that $f \in H(\mathbb{D} \setminus 0)$ and

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^2 dt \le 1 \quad \text{for all } r \in (0,1).$$

Prove that f has a removable singularity at the origin.

6. Let ψ be a one-to-one conformal mapping of \mathbb{D} onto the square $S = \{z = x + iy : |x| + |y| \le 1\}$ that satisfies $\psi(0) = 0$ and $\psi'(0) > 0$. Show that $\psi(z)$ is real for real z, and $\psi(z)$ is imaginary for imaginary z.