Comprehensive Examination in Complex Analysis August 2016

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, and let $H(\Omega)$ be the set of all holomorphic functions in a domain Ω .

1. Let f be entire and assume that

$$\iint_{D_R} |f(x+iy)| \, dxdy \le R$$

for all sufficiently large R > 0, where $D_R := \{z = x + iy \in \mathbb{C} : |z| < R\}$. Show that f is identically zero. (Hint: Use polar coordinates and the mean value property.)

- 2. Suppose that $f : \mathbb{D} \to \mathbb{D}$ is holomorphic, and the equation f(z) = z has at least two solutions in \mathbb{D} . Prove that f(z) = z for all $z \in \mathbb{D}$.
- 3. Suppose f and g are entire functions, and |f(z)| < |g(z)| for all $z \in \mathbb{C}$ such that |z| > 1. Show that f/g is a rational function.
- 4. Let $N \in \mathbb{N}$ and let $\{p_n\}_{n=1}^{\infty}$ be a sequence of polynomials of degree $\deg(p_n) \leq N$ for all $n \in \mathbb{N}$. Assume that this sequence converges uniformly on compact subsets of a domain G to a function f. Show that f is a polynomial of degree at most N.
- 5. Suppose f is entire and |f(z) i| > 1 for all $z \in \mathbb{C}$. Show f is constant.
- 6. Let $f \in H(\mathbb{D})$ satisfy f(iz) = -f(z) for all $z \in \mathbb{D}$. Show that there exists $g \in H(\mathbb{D})$ such that $f(z) = z^2 g(z^4)$.