Comprehensive Examination in Complex Analysis May/June 2016

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, and let $H(\Omega)$ be the set of all holomorphic functions in a domain Ω .

- 1. Show that $z^5 + 6z^3 10$ has exactly two zeros, counting multiplicities, in the annulus 2 < |z| < 3.
- 2. Let f and g be analytic on the closed unit disc $\overline{\mathbb{D}}$, and assume that both f and g have no zeros on $\overline{\mathbb{D}}$. Prove that if |f(z)| = |g(z)| for all $z \in \partial \mathbb{D}$, then f(z) = cg(z) in \mathbb{D} for a constant c of modulus 1.
- 3. Let Ω = C \ [0,1].
 (i) Show that there exists f in H(Ω) such that f'(z) = 1/z 1/(z-1).
 (ii) Show that there does not exist f in H(Ω) such that f'(z) = 1/z + 1/(z-1).
- 4. Suppose f is entire such that $\operatorname{Re} f(z) \ge \operatorname{Im} f(z)$ for all z with $|z| \ge 1$. Show that f is constant.
- 5. Let \mathcal{F} be the set of all f in $H(\mathbb{D})$ such that

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})| dt \le 1 \quad \text{for every } r \in (0,1).$$

Show that \mathcal{F} is a normal family.

6. Find a conformal mapping of the domain $G = \{z \in \mathbb{C} : |z-1| < 1 \text{ and } \text{Im } z > 0\}$ onto \mathbb{D} .