Comprehensive Examination in Complex Analysis January 2016

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, and let $H(\mathbb{D})$ be the set of all holomorphic functions in \mathbb{D} .

- 1. Suppose that $u \ge 0$ is harmonic in \mathbb{C} . Show that u is constant.
- 2. Let $\Omega \subset \mathbb{C}$ be a connected open set and u be a real-valued harmonic function in Ω . Define the set $E = \{z \in \Omega : u_x(z) = u_y(z) = 0\}$. Assume that E has a limit point in Ω and show that $E = \Omega$.
- 3. Suppose that $\mathcal{F} \subset H(\mathbb{D})$ is a normal family. Show that $\mathcal{F}' = \{f' : f \in \mathcal{F}\}$ is a normal family.
- 4. How many solutions (counting with multiplicities) does the equation sin z − z = 0 have in D? Find these solutions.
 Hint: Show that | sin z − z + z³/3! | < e/5! < 1/3! for |z| = 1.
- 5. Let f be analytic in $\mathbb{D} \setminus \{0\}$, and assume that 0 is an essential singularity of f. If $M(r) := \max_{|z|=r} |f(z)|$, show that

$$\lim_{r \to 0+} r^n M(r) = \infty$$

for all $n \in \mathbb{N}$.

6. Let $G \subset \mathbb{C}$ be a domain bounded by a simple closed contour L. Suppose that f is a non-constant holomorphic function in G, continuous on its closure. Prove that if |f(z)| = 1 for all $z \in L$, then f maps G onto \mathbb{D} .