Comprehensive Examination in Complex Analysis August 2015

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will receive partial credit.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and $\mathbb{T} = \partial \mathbb{D}$ in all problems.

- 1. Suppose that f is entire and $|f(z) f(w)| \le |z w|$ for all $z, w \in \mathbb{C}$. Show that there exist constants a and b such that f(z) = az + b.
- 2. Find a Laurent series expansion of the function

$$f(z) = \frac{z^2}{z^2 - z - 2}$$

in the annulus $\{z : 1 < |z| < 2\}$.

3. Evaluate the integral using contour integration:

$$\int_0^\infty \frac{x - \sin x}{x^3} \, dx$$

- 4. Suppose that f is meromorphic in \mathbb{C} , and there are positive numbers C, k and R such that $|f(z)| < C|z|^k$ for all z with |z| > R. Prove that f is a rational function.
- 5. Let $\psi : \mathbb{D} \to G$ be holomorphic in \mathbb{D} , and let G be a simply connected domain. Suppose that $\varphi : G \to \mathbb{D}$ is a conformal equivalence such that $\varphi(\psi(0)) = 0$. Show that if $\psi'(0) = 2015$ and $\varphi'(\psi(0)) = 1/2015$, then $\psi = \varphi^{-1}$.
- 6. Suppose that $G \in \mathbb{C}$ is open, K is a compact subset of G, $p \in G$, and there exists c > 0 such that $|f(p)| \leq c \sup_{z \in K} |f(z)|$ for all holomorphic functions f in G. Show that in fact $|f(p)| \leq \sup_{z \in K} |f(z)|$ for all such f. **Hint:** Consider f^n for $n = 1, 2, \ldots$