Comprehensive Examination in Complex Analysis May/June 2015

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will receive partial credit.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and $\mathbb{T} = \partial \mathbb{D}$ in all problems.

- 1. Suppose that f is entire, and there is M > 0 and a polynomial p such that $|f(z)| \le |p(z)|$ in the domain $\{z \in \mathbb{C} : |z| > M\}$. Prove that f is a polynomial.
- 2. Let \mathcal{F} be a normal family of holomorphic functions in an open connected set $G \subset \mathbb{C}$. Show that the family $\mathcal{F}' := \{f' : f \in \mathcal{F}\}$ is also normal in G. Is the converse true? (Prove or give a counterexample.)
- 3. Suppose that $G \subset \mathbb{C}$ is open, f is holomorphic in G, and $\gamma : [0,1] \to G$ is a smooth curve in G. Show that

$$\int_{\gamma} f'(z) \, dz = f(\gamma(1)) - f(\gamma(0)).$$

4. Suppose $u: \mathbb{D} \to \mathbb{R}$ is harmonic. Show that there exist constants a_n such that

$$u(re^{it}) = \sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{int}, \quad r \in [0,1), t \in \mathbb{R}.$$

- 5. Let f be a non-constant analytic function in \mathbb{D} , which is continuous on $\mathbb{D} \cup \mathbb{T}$ with |f(z)| = 1 for all $z \in \mathbb{T}$. Prove that
 - (a) f has at least one zero in \mathbb{D} ;
 - (b) f can be continued to a meromorphic function on $\mathbb{C} \cup \{\infty\}$ with at least one pole.
- 6. Find a conformal mapping of the domain $\{z \in \mathbb{D} : \operatorname{Re} z > 0 \text{ and } \operatorname{Im} z > 0\}$ onto \mathbb{D} .