Comprehensive Examination in Complex Analysis January 2015

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and $\mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}$ in all problems.

1. Define $F : \mathbb{R} \to \mathbb{C}$ by

$$F(a) = \int_{-\infty}^{\infty} \frac{e^{iat}}{1+t^2} \, dt.$$

- (i) Use the Residue Theorem to find F(a) for $a \ge 0$.
- (ii) Use the result of part (i) to find F(a) for a < 0.
- 2. Give an example of a non-constant holomorphic f in \mathbb{D} with infinitely many zeroes in \mathbb{D} . (Hint: One of many ways to do this is to set $f(z) = \sin(g(z))$ for a suitable g.)
- 3. Suppose f is analytic in \mathbb{D} . Show that f(iz) = if(z) for all $z \in \mathbb{D}$ if and only if $f(z) = zg(z^4)$ for some $g \in H(\mathbb{D})$.
- 4. Given a continuous function $u : \mathbb{C} \to \mathbb{R}$, let $u^{2014} + u^2$ be harmonic in \mathbb{C} . Show that u is identically constant.
- 5. Let f be holomorphic in \mathbb{H} , and let $|f(z)| \leq 1$, $z \in \mathbb{H}$. Find the largest possible value for |f'(i)|.
- 6. Let f be analytic in the strip $S = \{z \in \mathbb{C} : |\operatorname{Re} z| < 1\}$ and continuous on its closure. Assuming that f is real on ∂S , prove that it can be continued to an entire function F such that F(z+4) = F(z) for all $z \in \mathbb{C}$.