Comprehensive Examination in Complex Analysis January 2014

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits.

Let $\mathbb{D} = \{z \colon |z| < 1\}$ in all problems.

- 1. Let f be holomorphic on \mathbb{D} , and assume that f(iz) = f(z) for all $z \in \mathbb{D}$. Show that there exists a function g holomorphic on \mathbb{D} such that $f(z) = g(z^4)$ for all $z \in \mathbb{D}$.
- 2. Let f be holomorphic on \mathbb{D} , and assume that $|f(z)| \leq 1$ for all $z \in \mathbb{D}$ and that f has a zero of order 42 at the origin. Show that $|f(z)| \leq |z|^{42}$ for all $z \in \mathbb{D}$.
- 3. Let f be a function holomorphic on $\{z : |z| > R_0\}$ for some $R_0 > 0$. Define the residue of f at ∞ to be the residue at 0 of the function $F(z) = -z^{-2}f(1/z)$.

(a) Define γ_R on $[0, 2\pi]$ by $\gamma_R(t) = Re^{it}$. Show that if $R > R_0$ then the residue of f at ∞ equals $-\frac{1}{2\pi i} \int_{\gamma_R} f(z) dz$.

(b) Assume now that f is holomorphic on \mathbb{C} except for finitely many singularities. Show that the sum of all of the residues of f, including the residue at ∞ , is 0.

4. In this problem, if f is holomorphic near 0 we write L(f) for $\lim_{n\to\infty} f^{(n)}(0)/n!$ when that limit exists.

(a) Assume that, for some r > 1, f is holomorphic on $\{z \colon |z| < r\}$. Show that L(f) exists and equals 0.

(b) Find L(f) if f(z) = 1/(z-1) for $z \neq 1$.

(c) Assume that, for some r > 1, f is holomorphic on $\{z : |z| < r\}$ except for a simple pole of residue α at 1. Show that L(f) exists and equals $-\alpha$.

- 5. Suppose that $\{f_n\}$ is a sequence of functions holomorphic on \mathbb{D} , each f_n has no zero in \mathbb{D} , and $f_n \to f$ uniformly on compact subsets of \mathbb{D} . Assume that f is not identically zero. Show that f has no zero in \mathbb{D} .
- 6. Let \mathcal{F} be the set of all f holomorphic on \mathbb{D} such that

$$\iint_{\mathbb{D}} |f(x+iy)| \ dx \ dy \le 1.$$

Show that \mathcal{F} is a normal family. Hint: If $z_0 \in \mathbb{D}$ and $0 < \rho < 1 - |z_0|$ then

$$2\pi\rho|f(z_0)| \le \rho \int_0^{2\pi} |f(z_0 + \rho e^{it})| \, dt.$$

(Why?) Hence

$$\int_0^{1-|z_0|} 2\pi\rho |f(z_0)| \ d\rho \le \int_0^{1-|z_0|} \rho \int_0^{2\pi} |f(z_0+\rho e^{it})| \ dt \ d\rho.$$