Comprehensive Examination in Complex Analysis August 2013

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will receive partial credit.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and $\mathbb{T} = \partial \mathbb{D}$ in all problems.

- 1. Assume f is analytic in the punctured disk $\mathbb{D} \setminus \{0\}$. Can f' have a simple pole at the origin? Justify.
- 2. Let \mathcal{F} be the family of holomorphic in \mathbb{D} functions f satisfying the condition $|f(z)| \leq 1$ for all $z \in \mathbb{D}$. Given a point $\xi \in \mathbb{D}$, prove that there is a function $\phi \in \mathcal{F}$ such that

$$\phi'(\xi) = \sup_{f \in \mathcal{F}} |f'(\xi)|.$$

- 3. Is it possible that a sequence of polynomials converges uniformly on \mathbb{T} to the function $f(z) = \overline{z}$?
- 4. Suppose $u \ge 0$ is harmonic in \mathbb{C} . Show that u is constant.
- 5. Suppose that f is entire, $f(z + 2\pi) = f(z)$, $f(0) = f(\pi) = 0$, and $|f(x + iy)| \le e^{|y|}$. Show that $f(z) = c \sin(z)$ for some constant c.
- 6. Let $H(\mathbb{D})$ be the set of functions holomorphic in \mathbb{D} . Suppose that $f \in H(\mathbb{D})$ and for every positive integer n there exists $g \in H(\mathbb{D})$ with $f = g^n$. Show that there exists $h \in H(\mathbb{D})$ with $f = e^h$. Assume that f is not identically 0.