Comprehensive Examination in Complex Analysis January 2013

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and $\mathbb{T} = \partial \mathbb{D}$ in all problems.

- 1. Suppose that r(z) is a rational function with N poles (counted according to multiplicities) that is bounded in a neighborhood of infinity. Show that r(z) is holomorphic in a neighborhood of infinity, and that r(z) has exactly N zeroes in the extended plane $\mathbb{C} \cup \{\infty\}$.
- 2. Assume f is analytic on the annulus $A = \{z \in \mathbb{C} : 1 \le |z| \le 2\}$. If f satisfies $|f(z)| \le 1$ for |z| = 1 and $|f(z)| \le 8$ for |z| = 2, then show that $|f(z)| \le |z|^3$ for all $z \in A$.
- 3. Suppose that f is entire and $f(\mathbb{T}) \subset \mathbb{T}$. Prove that $f(z) = cz^n$, where |c| = 1 and $n \in \mathbb{N} \cup \{0\}$.
- 4. If u is harmonic in \mathbb{C} and $u \ge 0$, then show that u is constant.
- 5. Suppose that $V \subset \mathbb{C}$ is a connected open set and f is holomorphic in V. Show that there exists F holomorphic in V with F' = f if and only if

$$\int_{\gamma} f(z) \, dz = 0$$

for every piecewise-smooth closed curve $\gamma \subset V$.

6. Assume f is holomorphic in \mathbb{D} . Show that there exists a function g holomorphic in \mathbb{D} such that $|f(z)| \leq g(|z|)$ for all $z \in \mathbb{D}$.