Comprehensive Examination in Complex Analysis January 2012 General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ in all problems. - 1. Let $V = \{z \in \mathbb{C} : |z| < 2\}$ and $W = \{z \in \mathbb{C} : |z| > 1\}$. Suppose f is holomorphic in $V \cap W$. Show that there exist f_1 holomorphic in V and f_2 holomorphic in W such that $f(z) = f_1(z) + f_2(z), \ z \in V \cap W$. Hint: $V \cap W$ is an annulus, so . . . - 2. Let $\{f_n\}$ be a sequence of holomorphic in \mathbb{D} functions that satisfy $|f_n(0)| \leq 1$, $|f'_n(z)| \leq 1$, $z \in \mathbb{D}$, $n \in \mathbb{N}$. Show that there is a subsequence of $\{f_n\}$ that converges to a function f holomorphic in \mathbb{D} . - 3. We consider a sequence of polynomials p_n of exact degree n that converge to some function f uniformly on compact subsets of \mathbb{D} . - (i) Prove that if all zeros of p_n are contained in $\{z \in \mathbb{C} : |z| < 1/2\}$, then $f \equiv 0$ in \mathbb{D} . - (ii) Give an example of sequence p_n with all zeros on $\partial \mathbb{D}$ such that the limit function $f(z) \neq 0, z \in \mathbb{D}$. - 4. Show that $G := \{z \in \mathbb{C} : |z^2 1| < 1\}$ is the union of two simply connected domains D_1 and D_2 whose boundaries intersect at just one point. Sketch G. Find examples of conformal mappings of D_1 and D_2 onto \mathbb{D} . - 5. Suppose that f is entire and $|f(z)-f(w)| \leq |z-w|$ for all z, w. Show that f(z)=az+b. - 6. Let f be holomorphic in the upper half plane \mathbb{H} , and let f satisfy $$\lim_{\mathbb{H}\ni z\to x} f(z) = 0$$ for all x in a nonempty open set $U \subset \partial \mathbb{H} = \mathbb{R}$. Prove that $f \equiv 0$ in \mathbb{H} . Is this conclusion true if "holomorphic" is replaced with "harmonic"? Hint: The Schwarz Reflection Principle might be helpful here.