Comprehensive Examination in Complex Analysis August 2011

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ in all problems.

- 1. Let f be a holomorphic in \mathbb{D} function that satisfies the conditions f(0) = f'(0) = 0 and $|f(z)| \leq 1, z \in \mathbb{D}$. Prove that $|f(z)| \leq |z|^2, z \in \mathbb{D}$.
- 2. Let \mathbb{H} denote the upper half plane, and let $\overline{\mathbb{H}}$ be its closure. Suppose that f is continuous on $\overline{\mathbb{H}}$, and is holomorphic on \mathbb{H} . In addition, assume that there are constants $C>0, \ \alpha>0$ such that $|f(z)|\leq C|z|^{-\alpha}$ whenever $z\in\overline{\mathbb{H}}$ is sufficiently large in absolute value. Show that

$$f(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(x) dx}{x - z}, \quad z \in \mathbb{H}.$$

Hint: Apply the calculus of residues to a large semicircular contour in \mathbb{H} whose base is raised slightly above the real axis.

- 3. Define a branch f_0 of $f(z) = \log \frac{z-i}{z-1}$ that is analytic at z=0, with $f_0(0) = \pi i/2$. What is the radius of convergence for the Maclaurin series of f_0 ?
- 4. Let f be holomorphic in $\mathbb{D} \setminus \{0\}$, and assume that

No.
$$\lim_{r \to 1^-} \text{Im } f(re^{it}) = 0, \quad t \in [0, 2\pi).$$

Prove that there exists a holomorphic in $\mathbb{C}\setminus\{0\}$ function F such that $F(z)=f(z),\ z\in\mathbb{D}\setminus\{0\}$, and $F(1/\bar{z})=\overline{F(z)},\ z\in\mathbb{D}\setminus\{0\}$.

Hint: Use a conformal mapping of the upper half plane onto \mathbb{D} .

5. Assuming that f is holomorphic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$, show that f can be uniformly approximated on compact subsets of \mathbb{D} by rational functions of the form

$$r(z) = \sum_{k=1}^{n} \frac{a_k}{z - z_k}, \quad a_k \in \mathbb{C}, \ |z_k| = 1, \ k = 1, \dots, n.$$

6. Suppose that f is holomorphic in a neighborhood of $\zeta \in \mathbb{C}$, with $f^{(m)}(\zeta) = 0$ for $m = 1, \ldots, n-1$, and $f^{(n)}(\zeta) \neq 0$. Prove that the equation f(z) = A has exactly n solutions in a neighborhood of ζ (counted according to multiplicities), if $|A - f(\zeta)| < \epsilon$ for a sufficiently small $\epsilon > 0$.