Comprehensive Examination in Complex Analysis January 2011

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ in all problems.

- 1. Let $U = \mathbb{C} \setminus [0, 1]$. Show that there is a holomorphic function on U such that $\exp(f(z)) = z/(1-z)$ for all $z \in U$.
- 2. For each natural number n, define f_n(z) = zⁿ exp(2 − z) − 1.
 (a) Show that f_n has n zeros in D.
 (b) Show that all the zeros of f₁ in D are real, and have multiplicity one.
- 3. Let \mathcal{C} be the imaginary axis traversed in the positive direction. Compute

$$\int_{\mathcal{C}} \frac{e^z \, dz}{z^2 - 4}$$

4. Consider a class \mathcal{F} of functions

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \quad (a_n \in \mathbb{C})$$

satisfying the condition $\sum_{n=0}^{\infty} |a_n|^2 \leq 1$. (a) Show that every $f \in \mathcal{F}$ is holomorphic in \mathbb{D} .

- (b) Prove that \mathcal{F} is a normal family in \mathbb{D} .
- (c) Show that each $f \in \mathcal{F}$ satisfies $(1 |z|^2)|f(z)| \leq 1, z \in \mathbb{D}$.
- 5. Let f be holomorphic in $\mathbb{D} \setminus [-1/2, 1/2]$ and continuous in \mathbb{D} . Assuming that f is real valued on [1/2, 1), prove that f is holomorphic in \mathbb{D} . Hint: Use Reflection Principle.
- 6. Let $h : \mathbb{C} \to \mathbb{R}$ be harmonic and non-constant. Show, without using the Picard Theorem, that $h(\mathbb{C}) = \mathbb{R}$.