Comprehensive Examination in Complex Analysis Summer 2010

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits.

Throughout the exam $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ and $\mathbb{D}' = \mathbb{D} - \{0\}$.

- 1. Let $h: \mathbb{C} \to \mathbb{R}$ be a harmonic function and suppose that there are constants c < 1 and R > 0 such that $h(z) \le c \log |z|, |z| > R$. Show that h is constant.
- 2. By considering an appropriate contour integral, evaluate the improper integral

$$\int_0^\infty \frac{t^\alpha}{t^2 + 1} \, dt$$

for $-1 < \alpha < 1$.

3. Suppose that f is holomorphic on \mathbb{D} , $|f'(z)| \leq 1$ for all $z \in \mathbb{D}$, and f(0) = f'(0) = 0. Show that

$$|f(z)| \le \frac{|z|^2}{2}$$

for all $z \in \mathbb{D}$. Determine all possibilities for f if, in addition, there is some $w \in \mathbb{D}'$ such that $|f(w)| = \frac{1}{2}|w|^2$.

- 4. Let f be a meromorphic function on \mathbb{D}' and suppose that there is a sequence $\{p_n\} \subset \mathbb{D}'$ such that $p_n \to 0$ and each p_n is a pole of f. Let $U \subset \mathbb{D}$ be an open set containing 0. Show that $f(U \{0\})$ is dense in \mathbb{C} .
- 5. Let M > 0 and consider the set \mathcal{F} of all functions f such that

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

with $a_n \in \mathbb{C}$ and $\sum_{n=0}^{\infty} |a_n| \leq M$.

- (a) Show that every $f \in \mathcal{F}$ is continuous on $\overline{\mathbb{D}}$ and holomorphic on \mathbb{D} .
- (b) Show that \mathcal{F} is a normal family on \mathbb{D} .
- (c) Give an example of a sequence $\{f_k\} \subset \mathcal{F}$ that converges uniformly on each compact subset of \mathbb{D} , but does not converge uniformly on $\overline{\mathbb{D}}$.
- **6.** Let

$$\mathbb{S} = \{ z \in \mathbb{C} \mid -1 < \text{Re}(z) < 1, \ -1 < \text{Im}(z) < 1 \}$$

and suppose that f is an entire function such that $f(S) \subset S$. Show that $|f'(0)| \leq \sqrt{2}$.