Comprehensive Examination in Complex Analysis January 2010

General Instructions: Attempt all problems. Four complete solutions will guarantee a pass. Partial solutions will be considered on their merits.

Throughout the exam $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ and [a, b] denotes the line segment from a to b.

- 1. Let u and v be real-valued harmonic functions on \mathbb{D} . Prove or give a counterexample to each statement.
 - (a) The function u + iv is holomorphic on \mathbb{D} .
 - (b) The functions uv and u^2 are harmonic on \mathbb{D} .
 - (c) If u + iv is holomorphic on \mathbb{D} then $u^2 v^2$ is harmonic on \mathbb{D} .
- **2.** Let f be an entire function and suppose that $|f(x+iy)| \leq e^x$ for all $x, y \in \mathbb{R}$. Show that there is a constant $c \in \mathbb{C}$ with $|c| \leq 1$ such that $f(z) = ce^z$ for all $z \in \mathbb{C}$. Can the same conclusion be drawn if we instead assume that $|f(z)| \leq e^{|z|}$ for all $z \in \mathbb{C}$?
- 3. Let T > 0 and denote by C the rectangular contour made up of the segments [-T, T], [T, T + 2i], [T + 2i, -T + 2i], and [-T + 2i, -T].
 - (a) Use the theory of residues to evaluate the contour integral

$$\int_C \frac{z(2i-z)}{e^{\pi z} - e^{-\pi z}} \, dz.$$

(b) Use the result of (a) to evaluate the improper integral

$$\int_{-\infty}^{\infty} \frac{t}{e^{\pi t} - e^{-\pi t}} \, dt.$$

- 4. Let $\lambda > 1$. Show that the equation $e^{iz} + z^2 + \lambda^2 = 0$ has a unique solution in the upper half-plane $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$.
- **5.** Let $a \in \mathbb{D}$ and suppose that f is a holomorphic function on \mathbb{D} such that f(a) = 0 and $|f(z)| \leq 1$ for all $z \in \mathbb{D}$. Prove that

$$|f'(a)| \le \frac{1}{1 - |a|^2}$$

and describe those f for which this inequality is an equality. [Hint: Use Schwarz's Lemma.]

6. Let $U \subset \mathbb{C}$ be a bounded, connected, non-empty, open set. Let f be a non-constant holomorphic function on U and suppose that for all p in the boundary of U

$$\lim_{z \to p, \ z \in U} |f(z)| = 1.$$

Show that $f(U) = \mathbb{D}$. [Hint: The set \mathbb{D} is connected.]