Complex Analysis — January 2009

Five complete solutions will be a pass.

Notation: $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$ is the unit disk; $H(\mathbb{D})$ is the set of holomorphic functions in \mathbb{D} .

- 1. (i) Suppose that $\mathcal{F}_1 \subset H(\mathbb{D})$ is a normal family, and let $\mathcal{F}_2 = \{ f \in H(\mathbb{D}) : f(0) = 0, f' \in \mathcal{F}_1 \}$. Show that \mathcal{F}_2 is a normal family.
- (ii) Let \mathcal{F} be the collection of all $f \in H(\mathbb{D})$ such that f(0) = 0, f'(0) = 0, and $|f''(w)| \le 1/(1-|w|)$ for all $w \in \mathbb{D}$. Show that \mathcal{F} is a normal family.
- 2. (i) Suppose that f is an entire function. Show that there exists an entire function g with $f = g^2$ if and only if every zero of f has even order.
- (ii) Give an example of a function f holomorphic in the annulus $A=\{z\in\mathbb{C}:\frac{1}{2}<|z|<2\}$ such that f has no zero in A but there does not exist $g\in H(A)$ with $f=g^2$; explain. Hint: If $f=g^2$ then what can you say about

$$\frac{1}{2\pi i} \int_{|z|=1} \frac{f'(z)}{f(z)} dz?$$

- 3. Let f be an injective conformal mapping of \mathbb{D} onto a domain G that is simply connected and symmetric about the real axis (i.e., $\overline{z} \in G$ if and only if $z \in G$). Suppose that $0 \in G$ and that f satisfies f(0) = 0, f'(0) > 0. Prove that all the coefficients in the power series expansion $f(z) = \sum_{n=0}^{\infty} c_n z^n$ are real.
- **4.** Suppose that f is holomorphic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$; suppose that $I \subset \partial \mathbb{D}$ is a non-empty open arc and $f(e^{it}) = 0$ for all $e^{it} \in I$. Prove that f is identically zero. (*Note:* There are various ways to do this problem; some solutions may be simpler for the equivalent problem in the upper half-plane.)
- 5. Suppose that f is holomorphic in $\{z \in \mathbb{C} : 0 < |z| < 2\}$, $|f(z)| \le 1$ for all z with |z| = 1, n is a positive integer, and there exists c such that $|f(z)| \le c|z|^{-n}$ for all z with 0 < |z| < 1. Show that $|f(z)| \le |z|^{-n}$ for all z with 0 < |z| < 1.
- **6.** Suppose that p is a polynomial of degree n and $|p(z)| \le 1$ for all z with |z| = 1. Show that $|p(z)| \le |z|^n$ for all z with |z| > 1. Hint: You can use Problem 5 even if you haven't done that problem.

1