Complex Analysis — August 2006

Five complete solutions will constitute a pass.

D is the unit disc.

1. Show that there exists a rational function R(z) such that

$$R(z) = 2 + 6z^3 + 2z^4 + 6z^7 + 2z^8 + 6z^{11} + \dots$$

for all $z \in \mathbb{D}$. Find two polynomials P and Q such that R = P/Q, and locate the zeroes and poles of R.

- 2. Suppose that (f_n) is a sequence of holomorphic functions in \mathbb{D} and f_n converges to f uniformly on compact subsets of \mathbb{D} . Assume that f is not constant and $f(z_0) = 0$ for some $z_0 \in \mathbb{D}$. Prove that there exists a positive integer N and a sequence of points $(z_n) \subset \mathbb{D}$ such that $f_n(z_n) = 0$ for all $n \geq N$ and $\lim_{n \to \infty} z_n = z_0$.
- 3. Suppose P is a polynomial of degree $n \geq 3$. Suppose that P has n distinct zeroes z_1, \ldots, z_n . Use the Residue Theorem to show that

$$\sum_{j=1}^{n} \frac{z_j}{P'(z_j)} = 0.$$

4. Suppose that f is an entire function, f(0) = 0, $f'(0) = \pi$, f(z+1) = -f(z) for all $z \in \mathbb{C}$, and there exists c such that

$$|f(x+iy)| \le ce^{\pi|y|}$$

for all real x and y. Show that $f(z) = \sin(\pi z)$.

5. Let F be the family of all functions f holomorphic in \mathbb{D} such that f has a power series

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

with $|c_n| \leq n^2$ for all n. Show that F is a normal family.

6. Suppose that f and g are holomorphic in \mathbb{D} , and that |f(z)| + |g(z)| = 3 for all $z \in \mathbb{D}$. Prove that both f and g are constant in \mathbb{D} .

(One possible solution begins by choosing constants α and β with $|\alpha| = |\beta| = 1$ such that $|f(0)| = \alpha f(0)$ and $|g(0)| = \beta g(0)$, then considering the function $h = \alpha f + \beta g$; it follows that h is constant because ..., and that shows that f and g are constant because ...

Another solution uses the fact that

$$f(0) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{it}) dt$$

for 0 < r < 1 (and similarly for g.))