Complex Analysis — January 2006

Five complete solutions will constitute a pass.

The unit disk in the plane is $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. An *entire function* is a function analytic in the entire complex plane.

- 1. Suppose that P is a non-constant polynomial with real coefficients and A > 0. Show that there are at most finitely many real numbers x such that |P(x)| = A.
- 2. Show that there does not exist an entire function f such that f(1/n) = 1/(n+1) for n = 1, 2, ...

Hint: Show that there does exist exactly one such f analytic in a neighborhood of the origin (consider g(z) = 1/f(1/z)) but that this function is not entire.

3. Suppose that P is a polynomial of degree $n \geq 2$ with n distinct zeroes z_1, \ldots, z_n . Show that

$$\sum_{j=1}^{n} \frac{1}{P'(z_j)} = 0,$$

by applying the Residue Theorem to the integral of 1/P over an appropriate contour.

(Note that the result is false for n=1, so any correct solution must use the fact that $n\geq 2!$)

- 4. Let $\Pi^+ = \{x + iy : y > 0\}$ and $Q = \{x + iy : x > 0, y > 0\}$ denote the upper half-plane and the first quadrant, respectively. Let $\mathbb{D}^+ = \{x + iy \in \mathbb{D} : y > 0\}$ denote the upper half of the unit disk.
 - (i) Give an example of a conformal equivalence mapping Π^+ onto Q.
 - (ii) Give an example of a conformal equivalence mapping \mathbb{D} onto \mathbb{D}^+ .
- 5. Suppose that f is analytic in the annulus $A = \{z : r < |z| < R\}$. Show that there exist a function g analytic in $\{z : r < |z|\}$ and a function h analytic in $\{z : |z| < R\}$ such that

$$f(z) = g(z) + h(z) \quad (z \in A).$$

Show that f extends to a continuous function on $\{z: |z| = R\}$ if and only if h extends to a continuous function on $\{z: |z| = R\}$.

6. Suppose that $(P_n)_{n=1}^{\infty}$ is a sequence of polynomials with non-negative coefficients such that $\lim_{n\to\infty} P_n(x)$ exists for every x in the interval [0,1]. Show that (P_n) converges uniformly on compact subsets of \mathbb{D} to a function f analytic in \mathbb{D} , and show that f extends to a continuous function on $\overline{\mathbb{D}}$.

Hint: Show that $\{P_n\}$ is a normal family.

(Note that the example $P_n(z) = z^n$ shows that $\lim_{n\to\infty} P_n(z)$ need not exist for |z| = 1.)