PhD COMPREHENSIVE EXAM—COMPLEX ANALYSIS—August 2004

Notation: $B = \{z \in \mathbb{C}: |z| < 1\}$, the open unit disc

- 1. (a) Suppose that f is analytic in B. Show that f = F' for some function F analytic in B.
 - (b) Let $B' = B \setminus \{0\} = \{z \in \mathbb{C}: 0 < |z| < 1\}$. Define $f(z) = \frac{1}{z}$. Show that there does not exist a function F analytic in B' with F' = f.
- 2. Suppose f is entire and $|f(z)| \le |z|^2$ for all z. Show that $f(z) = cz^2$ for some constant c with $|c| \le 1$.
- 3. Let f and g be analytic functions on B so that f(z)g(z)=0 for all $z\in B$. Show that either f(z)=0 for all $z\in B$ or g(z)=0 for all $z\in B$.
- 4. Suppose that the nonconstant function f is analytic in a connected open set G which contains a simple closed curve on which |f(z)| = c for some constant c. Prove that there is at least one zero of f inside this curve, assuming that the inside of the curve is a subset of G.
- 5. Determine the number of roots of the equation

$$z^6 + z^3 + 5z^2 - 2 = 0$$

in the region $\{z: 1 < |z| < 2\}$.

- 6. (a) Let u be a continuous function on the closure of B which is harmonic on B. Express u(0) in terms of an integral along the unit circle. No proof is required.
 - (b) Let u be as in part (a). If 0 < r < 1 and θ is real give a formula for $u(re^{i\theta})$ in terms of an integral along the unit circle. Again, no proof is required.
 - (c) Let ϕ be the function defined on the unit circle by $\phi(e^{it}) = 1$ if $\alpha \leq t \leq \beta$ and $\phi = 0$ otherwise. Here α and β are constants with $0 \leq \alpha < \beta \leq 2\pi$. Using ϕ in place of u in the integral you found in part (b) defines a function on B. What is the value of that function at 0?