PhD COMPREHENSIVE EXAM—COMPLEX ANALYSIS—August 2002

Notation: $B = \{z \in \mathbb{C}: |z| < 1\}$, the open unit disc

- 1. Suppose that f is analytic on C.
 - (a) Assume that there exist positive constants a, b so that

$$|f(z)| \le a|z|^{1/2} + b$$

for all z. Show that f is constant.

(b) Assume now that there exist positive constants a, b so that

$$|f(z)| \le a|z|^{5/2} + b$$

for all z. What can you conclude about f?

- 2. Suppose that f is a complex-valued function on B and that the functions $g = f^2$ and $h = f^3$ are both analytic on B. Show that f is analytic on B.
- 3. Determine the number of zeros of the polynomial

$$z^7 - 4z^3 - 11$$

in the region $\{z: 1 < |z| < 2\}$.

4. Determine whether

$$\lim_{z \to 0} \left(\frac{1}{\tan^2 z} - \frac{1}{z^2} \right)$$

exists as a finite number.

- 5. We say that two open sets in C are conformally equivalent if there is a one-to-one analytic function mapping one set onto the other. Suppose that V_1 and V_2 are nonempty connected and simply-connected open sets in C, neither of which is conformally equivalent to B. Show that V_1 is conformally equivalent to V_2 .
- 6. Let $f: B \to B$ be analytic, and assume that f(0) = 0. Show that, for $z \in B$,

$$|f(z) + f(-z)| < 2|z|^2$$
.

Suggestion: Define

$$g(z) = \frac{f(z) + f(-z)}{2z}$$

if $z \in B^*$. (Here we write B^* for $B \setminus \{0\}$.) First use Schwarz's lemma to prove that $|g(z)| \leq 1$ for all $z \in B^*$, and then use Schwarz's lemma (along with a Taylor series for f) to show how the result follows.