Notation: $B = \{z \in \mathbb{C} : |z| < 1\}$, the open unit disc

- 1. Let D be a connected open set in C and f a function analytic on D.
 - a) Assuming that f has an analytic logarithm in D, show that f has analytic mth roots for all m. Explicitly: Assume that there exists h analytic on D so that $f = e^h$, and show that for each $m \in \mathbb{N}$ there exists a function g_m analytic on D so that $f = (g_m)^m$.
 - b) Assume now that $f \not\equiv 0$ and f has analytic mth roots for all m. Show that $f(z) \not\equiv 0$ for all $z \in D$. Hint: Look at multiplicities.
- 2. (a) Prove that if a, b, c and d are real numbers satisfying ad bc = 1, then

$$M(z) = \frac{az+b}{cz+d}$$

maps the upper half-plane $\mathbf{H}=\{x+iy\colon y>0\}$ conformally onto itself.

- (b) Let $f: B \to \mathbb{C}$ be such that the imaginary part of f is non-negative for all z in B. Assume that f is non-constant and is analytic in B. Show that
- (i) the imaginary part of f is strictly positive for all z in B;
- (ii) if f(0) = i, then

$$|f(z)| \leq \frac{1+|z|}{1-|z|}.$$

Hint: Use the Schwarz Lemma.

- 3. (a) Suppose f is an entire function such that f^2 is a polynomial. Does it follow that f is a polynomial?
 - (b) Suppose f is analytic on B and f^2 is a polynomial on B. Does it follow that f is a polynomial on B?

(Of course, you have to explain your answers).

4. Use residue theory to calculate with justification that

$$\int_0^\infty \frac{x \sin x}{x^2 + 4} \ dx = \frac{\pi}{2e^2}.$$

5. (a) Let G denote an open set in the complex plane containing \overline{B} . Suppose f is analytic on G and is non-zero on ∂B . Show that, with the counterclockwise orientation for ∂B ,

$$\frac{1}{2\pi i} \int_{\partial B} \frac{f'(z)}{f(z)} dz = N(f, B),$$

where N(f, B) counts the number of zeros of f in B with multiplicity.

- (b) Suppose f_n is a sequence of functions analytic on B such that $f_n \to f$ uniformly on B. Suppose f has exactly R zeros in the set $D = \{z: |z| < \frac{1}{2}\}$ and no zeros on ∂D . Show that there exists an N > 0 such that, for all n > N, the function f_n has exactly R zeros in D.
- 6. By definition, an automorphism of a connected open set G is a one-to-one analytic function mapping G onto G.
 - (a) Let f and g be automorphisms of B. Suppose there are two distinct points P and Q in B such that f(P) = g(P) and f(Q) = g(Q). Show that f = g on B.
 - (b) Let D be a simply connected domain in C which is not equal to C, and let f and g be automorphisms of D. Suppose there are two distinct points P and Q in D such that f(P) = g(P) and f(Q) = g(Q). Show that f = g on D.