Algebra Comprehensive Exam Oklahoma State University Department of Mathematics August 2010

General Instructions: Define your terminology, and explain your notation. If you require a standard result, such as one of the Sylow theorems, then state it before you use it; otherwise, give clear and complete proofs of your claims. All problems are of equal value. Four problems solved completely and correctly will guarantee a pass. Partial solutions will be considered on their merits.

Conventions: All rings are commutative with 1, and all modules are unitary $(1 \cdot a = a)$. The rational numbers are denoted by \mathbb{Q} , and the real numbers are denoted by \mathbb{R} .

- 1. Prove that a group of order $992 = 2^5 \cdot 31$ is solvable.
- 2. Let F(X) be the free group on a set X. Let Y be a subset of X, and let N be the smallest normal subgroup of F(X) containing Y. Show that F(X)/N is a free group.
- 3. Let R be a commutative ring with 1. Given an ideal $I \subset R$, define

$$\sqrt{I} = \{ f \in R : f^n \in I \text{ for some positive integer } n \}.$$

An ideal $Q \subseteq R$ is called *primary* if whenever $ab \in Q$, either $a \in Q$ or $b \in \sqrt{Q}$.

- (a) Prove if Q is primary, then \sqrt{Q} is prime.
- (b) Prove that if \sqrt{Q} is maximal, then Q is primary.
- 4. Let R be a commutative ring with 1, and let P be an R-module.
 - (a) Give two equivalent characterizations of an R-module P being projective. You need not prove the equivalence.
 - (b) If P and Q are projective R-modules, prove that $P \otimes_R Q$ is a projective R-module. (Hint: One definition of projective refers to free modules.)
- 5. Give an example of a polynomial $p(x) \in \mathbb{Q}[x]$ whose Galois group over \mathbb{Q} is the cyclic group of order 3. You must demonstrate the correctness of your example.
- 6. Let $\alpha = \sqrt{2 + \sqrt{2}} \in \mathbb{R}$.
 - (a) Determine the minimal polynomial f of α over \mathbb{Q} .
 - (b) Show that f splits over $E = \mathbb{Q}(\alpha)$.
 - (c) Show that $\operatorname{Gal}(E/\mathbb{Q})$ contains an element of order 4.