Comprehensive Examination in Algebra Oklahoma State University Department of Mathematics January 2007

General Instructions: Define your terminology and explain your notation. If you require a standard result, such as one of the Sylow Theorems, then state it before you use it; otherwise, give clear and complete proofs of your claims. The problems are of equal value. Four perfect solutions will guarantee a pass. Partial solutions will be considered on their merits.

- 1. Let G be a group of order 28.
 - (a) Show that G contains a unique subgroup of order 7.
 - (b) Show that the center of G is not trivial.
- 2. Let S_n denote the symmetric group of order n!. Suppose that G is a subgroup of S_7 and |G| = 6!. Show that G is isomorphic to S_6 .

[Hint: Consider the action of G on the set $\{1, \ldots, 7\}$. Show that G fixes some element and explain why this is sufficient.]

3. Let R be a UFD. Suppose that $I \triangleleft R[x]$ is a prime ideal such that $I \cap R = \{0\}$. Show that I is a principal ideal.

[Hint: Begin by considering a polynomial of least degree in I.]

4. Let R be a ring and M a non-zero cyclic left R-module. Show that M has a quotient that is a simple module.

[Definitions: A module M is cyclic if there is some $x \in M$ such that M = Rx; a module is simple if it is non-zero and has no submodules but itself and $\{0\}$. Note that the ring R need not be commutative and need not have a 1. Hint: Apply Zorn's Lemma to an appropriately chosen set of submodules of M.]

- 5. Let $\alpha = \sqrt{2 + \sqrt{3}}$ and $L = \mathbb{Q}(\alpha)$.
 - (a) Show that L/\mathbb{Q} is a normal extension.
 - (b) Determine $Gal(L/\mathbb{Q})$. Give a complete justification for your answer.
 - (c) Find all proper subfields of L. Express each in the form $\mathbb{Q}(\beta)$, where the minimal polynomial of β over \mathbb{Q} is given.
- 6. Prove that the complex numbers are an algebraically closed field. The only facts from analysis to which your proof may appeal are the following.
 - (1) A polynomial of odd degree with real coefficients has a real root.
 - (2) Every complex number has a square-root in the complex numbers.

[Hint: What do these facts say about the possible degrees of algebraic extensions of \mathbb{R} and \mathbb{C} ?]